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Abstract

A multiple scales method, which gives the approximate solution in terms of elliptic functions, is used for
the study of strongly non-linear oscillators with slowly varying parameters. As an application, quadratic
and cubic non-linear oscillators are studied in detail. Two examples are considered: a generalized Van der
Pol oscillator and a pendulum with variable length. Comparisons are also made with numerical results to
show the efficiency of the present method.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is to study the following strongly non-linear oscillator of the form

d2y

dt2
þ gð y; *t Þ ¼ eh y;

dy

dt
; *t

� �
; ð1Þ

where *t ¼ et is the slow scale. We assume that functions g and h are arbitrary non-linear functions
of their arguments and Eq. (1) has periodic solutions when e ¼ 0: The special cases of system (1)
have been studied by many authors. For the case of cubic polynomial with respect to y in gð y; *t Þ;
Yuste extended the KB method by using the Jacobian elliptic functions [1] and Cveticanin applied
adiabatic invariants and elliptic KB method to find the asymptotic solutions [2]. For the case of
linear damping in hð y;dy=dt; *t Þ; Kuzmak proposed a multiple scales method to obtain the
conditions of periodicity and asymptotic solutions of first order [3] and Luke extended Kuzmak’s
method to higher order [4]. Kevorkian and Li reviewed and compared the Kuzmak–Luke method
and that of near-identity averaging transformations [5,6]. The equations of motion of electrons in
a free electron laser (FEL) [7] are also of the special form of Eq. (1). In this paper, we will follow
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Kuzmak–Luke’s procedure to Eq. (1) and will discuss applications to quadratic and cubic non-
linear oscillators. For illustration, a generalized Van der Pol oscillator and a pendulum with
slowly varying length are studied in detail. Comparisons of asymptotic and numerical solutions
are also made to show the efficiency of the present method.

2. General theory

We assume that the solution of (1) can be developed in the form

yðt; eÞ ¼ y0ðtþ; *t Þ þ ey1ðtþ; *t Þ þ e2y2ðtþ; *t Þ þ?; ð2Þ

where *t ¼ et is the slow scale. The fast scale tþ; following Kuzmak [3], is defined as

dtþ

dt
¼ oð*t Þ

with an unknown oð*t Þ to be determined by the periodicity of the solution of (1). y0; y1;ymust be
periodic functions of tþ; otherwise the expansions cannot be asymptotic.
Substituting (2) into Eq. (1), expanding hð y; dy=dt; *t Þ in power series of e and equating

coefficients of like power of e yield the following equations:

o2ð*t Þ
@2y0
@tþ2

þ gð y0; *t Þ ¼ 0; ð3Þ

o2ð*t Þ
@2yn

@tþ2
þ g0

yð y0; *t Þyn ¼ Fnð y0; y1;y; yn�1; *t Þ; ð4Þ

where n ¼ 1; 2;y; F1 can be worked out in the form

F1 ¼ �2o
@2y0
@tþ@*t

�
do
dt

@y0

@tþ
þ h y0;o

@y0

@tþ
; *t

� �
: ð5Þ

Note that there is a periodic solution to the homogeneous equation (4) in the form

yI ¼
@y0

@j
; j ¼ tþ þ j0ð*t Þ: ð6Þ

The other solution linearly independent of can be found by the reduction of order

yII ¼ yI

Z j 1

y2I
dc: ð7Þ

Unfortunately, the solution yII is no longer periodic to general non-linear system. Using variation
of parameters, we obtain the general solution of the inhomogeneous equation (4) in the form

yn ¼Cnð*t ÞyI þ Dnð*t ÞyII �
yI

o2

Z j

FnyII dcþ
yII

o2

Z j

FnyI dc

¼ yI Cnð*t Þ þ
Z j dc

y2I
Dnð*t Þ þ

1

o2

Z c

FnyI dg
� �� �

; ð8Þ

where coefficients Cn and Dn can be determined by the periodicity of higher order solutions. To
have yn periodic in j; the inner integral and the outer integral in Eq. (8) must be periodic in c and
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j; respectively. We thus have, with the periodic normalized to be T ;Z T

0

FnyI dj ¼ 0; ð9Þ

Z T

0

dj
y2I

Dnð*t Þ þ
1

o2

Z j

0

FnyI dc
� �

¼ 0: ð10Þ

This paper just concerns applications of leading order approximations. More details of higher
order solution, readers can refer to [7].
The leading order solution has two parameters oð*t Þ and j0ð*t Þ to be determined. As shown in

Ref. [7], j0 is constant and is determined by initial conditions. Substituting Eqs. (5) and (6) into
(9) with n ¼ 1 yields Z T

0

2ofj*t fj þ
do
d*t

f 2j � hð f ;ofj; *t Þ fj

� �
dj ¼ 0: ð11Þ

Then we obtain the following equation to determine oð*t Þ:

d

d*t
o
Z T

0

f 2j dj
� �

�
Z T

0

hð f ;ofj; *t Þ fj dj ¼ 0: ð12Þ

In above two equations, notation y0 ¼ f ðj; *t Þ has been used. When the damping is linear, i.e.,
hð y;dy=dt; *t Þ ¼ kð y; *t Þ dy=dt; Eq. (12) becomes

d

d*t
o
Z T

0

f 2j dj
� �

� o
Z T

0

kð f ; *t Þ f 2j dj ¼ 0: ð13Þ

Integrating (13) gives

oð*t Þ ¼
cR T

0 f 2j dj
exp

Z *t

0

R T

0 kð f ; tÞ f 2j djR T

0 f 2j dj
dt

 !
; ð14Þ

where c is a constant. If the damping k depends on y; the calculation of oð*t Þ will be rather
involved. An approach of average damping is proposed in Ref. [7]. Instead of k; we use the leading
term of its Taylor series expansion around f ¼ yr; the resonance center, i.e., we assume

kð y; *t Þ ¼ kð yr; *t Þ þ kyð yr; *t Þð y � yrÞ þ 1
2

kyyð yr; *t Þð y � yrÞ
2 þ?; ð15Þ

where yr is the resonance center of system (1) and is determined by gð yr; *t Þ ¼ 0: Because the
system oscillates around the center yr; the second term of expansion (15) vanishes on average.
Therefore, substitution of kð y; *t ÞEkð yr; *t Þ into (14) should give a good approximation for oð*t Þ:
The result is

oð*t Þ ¼
cR T

0 f 2j dj
exp

Z *t

0

kð yr; tÞ dt

 !
: ð16Þ

Numerical examples in Section 4 shows that the results are quite satisfactory.
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3. Applications to quadratic and cubic non-linear oscillators

3.1. Quadratic non-linear oscillator

We now apply the results summarized in previous section to the following quadratic non-linear
system:

d2y

dt2
þ að*t Þy þ bð*t Þy2 ¼ ekð y; *t Þ

dy

dt
: ð17Þ

Suppose that the solution of (17) can be developed in the form of asymptotic expression (2). The
leading order equation corresponding to (3) has the form

o2ð*t Þ
@2y0
@tþ2

þ að*t Þy0 þ bð*t Þy20 ¼ 0: ð18Þ

Its energy integral is

o2ð*t Þ
2

@y0

@tþ

� �2

þVð y0; a; bÞ ¼ E0ð*t Þ; ð19Þ

where

V ð y0; a; bÞ ¼ 1
2

að*t Þy20 þ
1
3

bð*t Þy30 ð20Þ

is the potential, and E0ð*t Þ is the slowly varying energy of the system. It can be seen from (20) that
V has a minimum at y0 ¼ 0 for að*t Þ > 0: So Eq. (17) has periodic solutions around y0 ¼ 0 and the
resonance center is at yr ¼ 0: V has a minimum at y0 ¼ �að*t Þ=bð*t Þ for að*t Þo0: Eq. (17) has
periodic solutions around y0 ¼ �að*t Þ=bð*t Þ and the resonance center is at yr ¼ �að*t Þ=bð*t Þ: This
paper just concerns the symmetrical oscillations, i.e., the case of að*t Þ > 0: The calculations for the
case of að*t Þo0 are essentially similar to that of að*t Þ > 0:
By integrating (19), we can obtain y0 in terms of elliptic function of tþ: However, here is an

alternative. We first assume that the solution is in the form of elliptic function, and then determine
its amplitude and modulus via (18). Suppose that we have

y0 ¼ A0ð*t Þcn2½KðvÞj; vð*t Þ� þ B0ð*t Þ; ð21Þ

where j ¼ tþ þ j0 and KðvÞ is the complete elliptic integral of the first kind associated with the
modulus

ffiffiffi
v

p
: Substituting (21) into (18) yields

2o2K2A0ð1� vÞ þ aB0 þ B2
0 þ A0½4o2K2ð2v � 1Þ þ a þ 2bB0�cn2ðu; vÞ

þ A0ðbA0 � 6o2K2vÞcn4ðu; vÞ ¼ 0; ð22Þ

where u ¼ KðvÞj and the equation

@2

@u2
½cn2ðu; vÞ� ¼ 2ð1� vÞ þ 4ð2v � 1Þcn2ðu; vÞ � 6vcn4ðu; vÞ
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has been used. From (22) we obtain algebraic equations:

2o2K2A0ð1� vÞ þ aB0 þ B2
0 ¼ 0;

A0½4o2K2ð2v � 1Þ þ a þ 2bB0� ¼ 0;

A0ðbA0 � 6o2K2vÞ ¼ 0:

Then, we have

A0 ¼
3av

2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v þ 1

p ; B0 ¼ �
a

2b

2v � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v þ 1

p þ 1

 !
; ð23; 24Þ

o4 ¼
a2

16K4ðv2 � v þ 1Þ
: ð25Þ

Substituting (21) into (16), we get another form of oð*t Þ

o5 ¼
cb2

144K5v2JðvÞ
exp

Z *t

0

kð0; tÞ dt

 !
; ð26Þ

where

JðvÞ ¼
Z K

0

sn2ðu; vÞcn2ðu; vÞ dn2ðu; vÞ du

¼
1

15v2
½ð1� vÞðv � 2ÞKðvÞ þ 2ðv2 � v þ 1ÞEðvÞ�:

From (25) and (26), we have an equation for v

v2JðvÞ

ðv2 � v þ 1Þ5=4
¼

2cb2

9a5=2
exp

Z *t

0

kð0; tÞ dt

 !
: ð27Þ

3.2. Cubic non-linear oscillator

Consider the following cubic non-linear oscillator:

d2y

dt2
þ a1ð*t Þy þ b1ð*t Þy3 ¼ ek1ð y; *t Þ

dy

dt
: ð28Þ

Here, we only consider the case of the resonance center at origin, i.e., the case of að*t Þ > 0: Similar
to the quadratic non-linear oscillator, we can get leading order approximate solution

y0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2a1v

b1ð1þ vÞ

s
snðKj; vÞ ð29Þ

and

oð*t Þ ¼
�c1b1ð1þ vÞ
2a1vKðvÞLðvÞ

exp

Z *t

0

k1ð0; tÞ dt

 !
; ð30Þ

ARTICLE IN PRESS

J. Cai, Y.P. Li / Journal of Sound and Vibration 275 (2004) 241–248 245



where

LðvÞ ¼
Z K

0

cn2ðu; vÞ dn2ðu; vÞ du ¼
1

3v
½ð1þ vÞEðvÞ � ð1� vÞKðvÞ�:

The equation governed v becomes

v2L2ðvÞ

ð1þ vÞ3
¼

c21b
2
1

4a31
exp 2

Z *t

0

k1ð0; tÞ dt

 !
; ð31Þ

where constant c1 can be determined by the initial values of the system.

4. Examples

Example 1. Consider the following generalized Van der Pol oscillator:

d2y

dt2
þ ð1þ etÞ2y � ð1þ etÞ5=2y2 ¼ e

1

1þ et
� y2

� �
dy

dt
; ð32Þ

yð0Þ ¼ 0:5; ’yð0Þ ¼ 0: ð33Þ

From initial conditions we can obtain j0 ¼ 1 and c ¼ 0:27312: The comparison of numerical
solution and asymptotic solution obtained by (21)–(27) with e ¼ 0:01 is shown in Fig. 1. In this
paper the symbolic language Mathematica is used to implement the asymptotic and numerical
solutions.

Example 2. Consider the following pendulum with slowly varying length:

d

dt
l2ð*t Þ

dy
dt

� �
þ glð*t Þ sin y ¼ 0; ð34Þ

where y is the angle of deviation of the pendulum from the vertical, g is the gravitational
acceleration, lð*t Þ is the slowly varying length, *t ¼ et is the slow scale. Such problem was discussed
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in Ref. [1] but only the amplitude was given there. For not large oscillations, we can approximate
sin y by the first two terms of the power series expansion, and then Eq. (34) becomes

d2y
dt2

þ e
2l0ð*t Þ
lð*t Þ

dy
dt

þ
g

lð*t Þ
y�

g

6lð*t Þ
y3 ¼ 0; ð35Þ

where l0 ¼ dl=d*t: When lð*t Þ ¼ 1þ *t and g ¼ 9:8; Eq. (35) becomes

d2y
dt2

þ e
2

1þ et
dy
dt

þ
9:8

1þ et
y�

9:8

6ð1þ etÞ
y3 ¼ 0 ð36Þ

with initial conditions yð0Þ ¼ 1
3
p; ’yð0Þ ¼ 0: The comparison of numerical solution and asymptotic

solution obtained by (29)–(31) with e ¼ 0:01 is shown in Fig. 2.

5. Conclusions

1. The Kuzmak–Luke method is used to obtain the conditions of periodicity of certain strongly
non-linear oscillators and the asymptotic solutions of quadratic and cubic non-linear
oscillators.

2. Two examples are given: the generalized Van der Pol oscillator and the pendulum with slowly
varying length. The asymptotic solutions are almost identical with the numerical solutions in
Figs. 1 and 2.
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