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Abstract

A multiple scales method, which gives the approximate solution in terms of elliptic functions, is used for
the study of strongly non-linear oscillators with slowly varying parameters. As an application, quadratic
and cubic non-linear oscillators are studied in detail. Two examples are considered: a generalized Van der
Pol oscillator and a pendulum with variable length. Comparisons are also made with numerical results to
show the efficiency of the present method.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is to study the following strongly non-linear oscillator of the form
2

d7y o dy .
G oD = (1. 507), n

where 7 = et is the slow scale. We assume that functions g and /4 are arbitrary non-linear functions
of their arguments and Eq. (1) has periodic solutions when ¢ = 0. The special cases of system (1)
have been studied by many authors. For the case of cubic polynomial with respect to y in g( y,7),
Yuste extended the KB method by using the Jacobian elliptic functions [1] and Cveticanin applied
adiabatic invariants and elliptic KB method to find the asymptotic solutions [2]. For the case of
linear damping in A(y,dy/dt,7), Kuzmak proposed a multiple scales method to obtain the
conditions of periodicity and asymptotic solutions of first order [3] and Luke extended Kuzmak’s
method to higher order [4]. Kevorkian and Li reviewed and compared the Kuzmak-Luke method
and that of near-identity averaging transformations [5,6]. The equations of motion of electrons in
a free electron laser (FEL) [7] are also of the special form of Eq. (1). In this paper, we will follow

*Corresponding author.
E-mail addresses: zsucjp@sina.com (J. Cai), ypli@umac.mo (Y.P. Li).

0022-460X/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsv.2003.06.002



242 J. Cai, Y.P. Li | Journal of Sound and Vibration 275 (2004) 241-248

Kuzmak—Luke’s procedure to Eq. (1) and will discuss applications to quadratic and cubic non-
linear oscillators. For illustration, a generalized Van der Pol oscillator and a pendulum with
slowly varying length are studied in detail. Comparisons of asymptotic and numerical solutions
are also made to show the efficiency of the present method.

2. General theory

We assume that the solution of (1) can be developed in the form

y(la 8) = J’O(ﬁ’ Z) + 8)71(l+a Z) + 32)’2(l+, i) + -, (2)
where 7 = et is the slow scale. The fast scale 1", following Kuzmak [3], is defined as
drt -
F T

with an unknown w(7) to be determined by the periodicity of the solution of (1). yg, y1, ... must be
periodic functions of 7+, otherwise the expansions cannot be asymptotic.

Substituting (2) into Eq. (1), expanding A(y,dy/dt,7) in power series of ¢ and equating
coefficients of like power of ¢ yield the following equations:

2, 52)/0 ~
w(t)m—kg(yo,l)zo, 3)
207 a2yn / bt b1
w(Z)W—i_gy(y():[)yn:EI(yO:yla"-ayn—l’l)a (4)
where n = 1,2, ..., F| can be worked out in the form
?*yo dw oy, oo -
F=-2 ~———=—+h| yo,0=—,7]. 5
! “oror dror 0P ®)
Note that there is a periodic solution to the homogeneous equation (4) in the form
ay() ~
= B @ =1+ o). (6)

The other solution linearly independent of can be found by the reduction of order

(p 1
= / ~dy. %)

I

Unfortunately, the solution yyy is no longer periodic to general non-linear system. Using variation
of parameters, we obtain the general solution of the inhomogeneous equation (4) in the form

(7 - n ¢ yn ¢
Yn —Cn(t)yI+Dn(t)yII _E FnyII dlﬂ‘FE FnyI dlﬁ

® v
—njcms [ (o [ ) | ®
I

where coefficients C,, and D, can be determined by the periodicity of higher order solutions. To
have y, periodic in ¢, the inner integral and the outer integral in Eq. (8) must be periodic in ¥ and
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@, respectively. We thus have, with the periodic normalized to be T,

T
/ Fyyide =0, ©)
0

Tde . 1 [?
/0 y_%<D”([)+E/O Fn dlﬁ) =0. (10)

This paper just concerns applications of leading order approximations. More details of higher
order solution, readers can refer to [7].

The leading order solution has two parameters w(7) and ¢,(7) to be determined. As shown in
Ref. [7], ¢, is constant and is determined by initial conditions. Substituting Egs. (5) and (6) into
(9) with n =1 yields

d dw .

/ <2wf¢;f<p + 2 = B t)fq>> dg = 0. (1
Then we obtain the following equation to determine w(7):
d T, T -

alo [ 72a0) = [ rofuis,do=o (12)

In above two equations, notation yy = f(¢p,7) has been used. When the damping is linear, i.e.,
h(y,dy/dt, 1) = k(y,7)dy/dt, Eq. (12) becomes

d T T .
glo [ f190) ~o [CKrisiae=o (13)
Integrating (13) gives
o Ty k(f 0 f2de 4 14
R d<pexp</o Trede ) (9

where ¢ is a constant. If the damping k depends on y, the calculation of w(7) will be rather
involved. An approach of average damping is proposed in Ref. [7]. Instead of k, we use the leading
term of its Taylor series expansion around f = y,, the resonance center, i.e., we assume

k(3. 7) = k(pn ) + k(1 DY = ) + 5 k(3 DI(p = 200> + -2, (15)

where y, is the resonance center of system (1) and is determined by g(y,,7) = 0. Because the
system oscillates around the center y,, the second term of expansion (15) vanishes on average.
Therefore, substitution of k( y,7)~k( y,,7) into (14) should give a good approximation for w(7).
The result is

. c f
= —n k o d . 6
w(f) fOTf(g do exp (/0 (Y, 7) r) (16)

Numerical examples in Section 4 shows that the results are quite satisfactory.
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3. Applications to quadratic and cubic non-linear oscillators
3.1. Quadratic non-linear oscillator

We now apply the results summarized in previous section to the following quadratic non-linear
system:

dy . - dy
—=+a(f )y +b({)y* = ek(y,71)—=. 17
dt2+a( W+ b))y = ek(y, )dt (17)
Suppose that the solution of (17) can be developed in the form of asymptotic expression (2). The

leading order equation corresponding to (3) has the form

o

w*(7) 2 T Dy +b( Wi = 0. (18)
Its energy integral is
w*(7) (3y0° N
S(52) +Onab = £ (19)
where
V(y0,a,b) = L a(@)ys + 3 b(0)y; (20)

is the potential, and Ey(7) is the slowly varying energy of the system. It can be seen from (20) that
J has a minimum at yy = 0 for a(7) > 0. So Eq. (17) has periodic solutions around yy = 0 and the
resonance center is at y, = 0. V' has a minimum at yy = —a(7)/b(7) for a(7)<0. Eq. (17) has
periodic solutions around yy = —a(7)/b(7) and the resonance center is at y, = —a(7)/b(7). This
paper just concerns the symmetrical oscillations, i.e., the case of a(7) > 0. The calculations for the
case of a(7)<0 are essentially similar to that of a(7) > 0.

By integrating (19), we can obtain y, in terms of elliptic function of #*. However, here is an
alternative. We first assume that the solution is in the form of elliptic function, and then determine
its amplitude and modulus via (18). Suppose that we have

o = Ao(D)en’[K (0)g, ()] + Bo(7), 1)

where ¢ = 1 + ¢, and K(v) is the complete elliptic integral of the first kind associated with the
modulus \/5 Substituting (21) into (18) yields

20°K*Ao(1 — v) + aBy + Bj + Ao[dw*K*(2v — 1) + a + 2bBylen*(u, v)
+ Ay(bAy — 60> K?v)en*(u,v) = 0, (22)

where u = K(v)p and the equation

a@_; [cn?(u, v)] = 2(1 — v) + 420 — V)en®(u, v) — 6ven® (u, v)
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has been used. From (22) we obtain algebraic equations:
20°K*Ao(1 — v) +aBy + Bj = 0,
Ao[40”’K*(2v — 1) 4 a + 2bBy] = 0,
Ay(bAy — 60> K?v) = 0.

Then, we have

3av a 20— 1
Ay=————, By=——| ——+1, (23,24)
° 2b\/ 12 —v+ 1 ’ 2[7( v —v+1 )
2
4 a
@ Tk — o+ 1) 25)
Substituting (21) into (16), we get another form of w(7)
s b’ k0,0 26
W—WUU(U)CXP/O(,T)T, (26)
where
K
J(v) = / sn*(u, v)en®(u, v) dn?(u, v) du
0
=52 [(1 — v)(v — 2)K(v) + 2(v* — v+ DE®)].
From (25) and (26), we have an equation for v
v*J(v) 2ch? ‘
T = 95572 exp /0 k(0,7)dz |. (27)
3.2. Cubic non-linear oscillator
Consider the following cubic non-linear oscillator:
d? " . ..d
TaHa@y+ by = ski(n.D) (28)

Here, we only consider the case of the resonance center at origin, i.e., the case of a(7) > 0. Similar
to the quadratic non-linear oscillator, we can get leading order approximate solution

—2a1v
Yo = \/msn([(%l’) (29)

- —cabi(1+v) i
(,U([) = mexp (A k] (O, T) dT) . (30)

and
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where

L(v) = /OK en®(u, v) dn?(u, v) du = %[(1 + 0)E(v) — (1 — v)K(v)].

The equation governed v becomes

2712 27,2 7
v L) —Cl—blexp<2/ kl(o,f)df>,
0

(1+0)  4ai

where constant ¢; can be determined by the initial values of the system.

4. Examples

Example 1. Consider the following generalized Van der Pol oscillator:

dzy 2 5/2 1
dt2+( +etyy—(1+et) "y =¢ ity

3(0) = 0.5, §(0)=0.

dy
dr’

(1)

(32)

(33)

From initial conditions we can obtain ¢, = 1 and ¢ = 0.27312. The comparison of numerical
solution and asymptotic solution obtained by (21)—(27) with ¢ = 0.01 is shown in Fig. 1. In this
paper the symbolic language Mathematica is used to implement the asymptotic and numerical

solutions.

Example 2. Consider the following pendulum with slowly varying length:

d/, . do o
&<l (l)a> +gl(f)sin6 =0,

(34)

where 0 is the angle of deviation of the pendulum from the vertical, g is the gravitational
acceleration, /(7) is the slowly varying length, 7 = &z is the slow scale. Such problem was discussed

10 20! 30 0 0

-0.2+

Fig. 1. Solution and approximation of Eq. (32); ——, numerical solution and ------ , asymptotic solution.
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s
a5

in Ref. [1] but only the amplitude was given there. For not large oscillations, we can approximate
sin 6 by the first two terms of the power series expansion, and then Eq. (34) becomes

d%o e 21/(t)d9+
dr (7)) dt (7

g 3 _
_61(5)9 =0, (35)

where I’ = d//di. When /(i) = 1+ 7 and g = 9.8, Eq. (35) becomes

d?0 2 do 98 98
S+ + - =
dr2 l+erdr 1+t 6(1 + &r)

(36)

with initial conditions 0(0) = %n, 0(0) = 0. The comparison of numerical solution and asymptotic
solution obtained by (29)—(31) with ¢ = 0.01 is shown in Fig. 2.

5. Conclusions

1. The Kuzmak—Luke method is used to obtain the conditions of periodicity of certain strongly
non-linear oscillators and the asymptotic solutions of quadratic and cubic non-linear
oscillators.

2. Two examples are given: the generalized Van der Pol oscillator and the pendulum with slowly
varying length. The asymptotic solutions are almost identical with the numerical solutions in
Figs. 1 and 2.
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